

Solution of DPP # 6 TARGET : JEE (ADVANCED) 2015 COURSE : VIJAY & VIJETA (ADR & ADP)

PHYSICS

1. Let mass 'm' falls down by x so spring extends by 4x ;

$$
\therefore \frac{T}{4} = k(4x)
$$

$$
T = (16k) x
$$

Where T is the restoring force on mass m

$$
\therefore f = \frac{1}{2\pi} \sqrt{\frac{16k}{m}}
$$

$$
f = \frac{2}{\pi} \sqrt{\frac{k}{m}} = \frac{2}{\pi} \times \sqrt{\frac{25}{1}} = \pi Hz
$$

axis through

2. Apply C.O.A.M.,

$$
10 \times 1 = \frac{ML^2}{3} \omega \, ; \, \omega = 15 \text{ rad. K.E.} = \frac{1}{2} \ln^2 = 75 \text{ J}
$$

$$
I' = I_{cm} + m \left(\frac{a}{2\sqrt{3}}\right)^2 = \frac{5ma^2}{24}, \qquad I_{cm} = \frac{m\left(\frac{a}{2}\right)^2}{2} = \frac{ma^2}{8}
$$

$$
I = 3I' = \frac{5ma^2}{8}.
$$

$$
4.
$$

4. $F = V \frac{dm}{dt} = \rho_a$

$$
= \rho_{a} \ell \, hV.V = \rho_{a} \ell \, hV^{2} \qquad \{ \because \frac{dm}{dt} = \rho_{a} \ell \, h \, V \}
$$

Total torque of air about point P is $\rho_{\sf a} \ell {\sf h} {\sf V}^2 \frac{\cdots}{2}$

$$
\tau_a = \frac{\rho_a \ell h^2 V^2}{2}
$$
; $\tau_w = Mg \cdot \frac{t}{2} = \rho_\omega \cdot \ell \cdot h \cdot t \cdot g \cdot \frac{t}{2}$

for toppling $_{a}$ > $_{\tau_{\omega}} \Rightarrow$ V > $\left(\frac{P_{\omega}s}{\rho_{A}h}\right)$ t

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Resonal Website : www.resonance.ac.in **| E-mail : contact@resonance.ac.in**
Educating for better tomorrow **TODSING : WWW.PESSINGHOUSIGERRY | 2-Mail : Contact@resonance.ac.inf
Toll Free : 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029** J \setminus

h

 $g\big)^{1/2}$ $\frac{\omega}{A} h$

 \mathcal{L}

 $\overline{}$

ſ ρ ρ_{ω}

5. $x = A_0(1 + \cos 2\pi v_2 t)$. $\sin 2\pi v_1 t$

$$
= A_0 \sin 2\pi v_1 t + \frac{A_0}{2} [(\sin 2\pi (v_1 + v_2)t + \sin 2\pi (v_1 - v_2)t]
$$

Hence the frequencies are

$$
v_1
$$
, $|v_1 - v_2|$, $v_1 + v_2$.

6. O is the centre of mass of the hollow hemisphere and is $\frac{R}{2}$ from C. $f = mg \sin \theta$ (1)
 $N = mg \cos \theta$ (2) $N = mg \cos \theta$ N × $\frac{R}{2}$ sin $\alpha = \left[R - \frac{R}{2}\cos \alpha\right]$ $\overline{}$ $\overline{}$ $R-\frac{R}{2}\cos\alpha$ $R - \frac{R}{2} \cos \alpha \mid f$ (3) \therefore tan $\theta = \frac{\arccos{\alpha}}{2 - \cos{\alpha}}$ α $2 - \cos$ $\frac{\sin \alpha}{\cos \alpha} \Rightarrow \alpha = 60^{\circ}$

7. If the mass M is displaced by x from its mean position each spring further stretched by 2x.

2kx 2kx 2kx 2kx

Net restoring force

F = -8kx
M.a = -8 kx

$$
f = \frac{1}{2\pi} \sqrt{\left|\frac{a}{x}\right|} = \frac{1}{2\pi} \sqrt{\frac{8k}{M}} = \frac{1}{\pi} \sqrt{\frac{2k}{M}}
$$

8. Angular acceleration of rod

$$
\alpha = \frac{m(x+L)gsin\theta}{m(x^2 + L^2)}
$$

For rod to fall as fast as possible, $\frac{d\alpha}{dx} = 0$

or $x = (\sqrt{2} - 1)$ L

9. Let centre of disc is displaced by x from its equilibrium position(spring was in its natural length). Now calculate the torque about lowest point of disc.

$$
k \cdot \frac{3}{2}R \cdot \frac{3x}{2} = \frac{3}{2}mR^{2} \frac{a}{R}
$$

$$
\frac{3kx}{2m} = a
$$

So, $T = 2\pi \sqrt{\frac{2m}{3k}}$.

10. amplitude is obtained for $v = 0$

$$
\therefore A = \sqrt{\frac{E}{a}}
$$

\nMaximum velocity is obtained for x = 0
\n
$$
V_{max} = \sqrt{\frac{E}{b}} \qquad V_{max} = A \omega
$$

\n
$$
\omega = \frac{\sqrt{\frac{E}{b}}}{\sqrt{\frac{E}{a}}} = \sqrt{\frac{a}{b}}
$$

\n
$$
T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{b}{a}}
$$

Alternative

$$
E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2
$$

\n
$$
b = \frac{m}{2}, a = \frac{k}{2}
$$

\n
$$
\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{a}{b}}
$$

\n
$$
E = \frac{1}{2}mv_{max}^2 \implies V_{max} = \sqrt{\frac{E}{b}}
$$

\n
$$
E = \frac{1}{2}kA^2 \qquad A = \sqrt{\frac{E}{a}}
$$

\n11.
$$
T = 2\pi \sqrt{\frac{I}{mg\ell}}, I = m\ell^2 + m(2\ell)^2 = 5m\ell^2
$$

\n
$$
= 2\pi \sqrt{\frac{5m\ell^2}{2mg\frac{3\ell}{2}}} = 2\pi \sqrt{\frac{5\ell}{3g}}
$$

$$
\therefore \qquad \mathsf{L}_{\text{eq}} = \frac{5\ell}{3}
$$

12.
$$
Mg - f_B = F_v
$$

\n $\Rightarrow \frac{4}{3} \pi r^3 (\rho_m - \rho_\ell) g = F_v$

13. (a) Initially

$$
I_1 = \frac{3}{10} \text{ mR}^2 \quad \text{&} \quad \omega_1 = \omega
$$

Finally $I_2 =$ $\frac{13}{10}$ mR² & $\omega_2 = \omega_{\text{new}}$

Using conservation of Angular momentum

 $I_1 \omega_1 = I_2 \omega_2$

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Resonance.ac.in **| Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in**

Educating for better tomorrow T_{roll Free} : 1800 200 2244 | 1800 258 5555**| CIN: U80302RJ2007PTC TOLL FREE : 1800 200 2244 | 1800 258 5555 CIN: U80302RJ2007PTC024029** PAGE NO.- 3

$$
\omega_2 = \omega_{\text{new}} = \frac{3\omega}{13}
$$

14. Energy Density =
$$
\frac{1}{2}
$$
 stress × strain = $\frac{1}{2}$ Y (strain)² = 2880 J/m³

15. Rod behaves as spring of spring constant $\frac{YA}{\ell}$ Equivalent system is:

$$
\frac{1}{2} + \frac{1}{2} = \frac{2Y \times \frac{A}{2}}{2\pi}
$$

The time period of oscillations of block is

$$
T = \frac{2L}{V} + \frac{1}{2} \left(2\pi \sqrt{\frac{mL}{YA}} \right) + \frac{1}{2} \left(2\pi \sqrt{\frac{mL}{2Y.A/2}} \right)
$$

$$
= \frac{2L}{V} + 2\pi \left(\frac{mL}{AY} \right)
$$

16. The force
$$
F_1
$$
 causes extension in rod.

 F_2 causes compression in left half of rod and an equal extension in right half of rod. Hence $\mathsf{F}_2^{}$ does not effectively change length of the rod.

17. Since F-r curve is continuous, so

 \backslash

$$
\left. \frac{dF}{dr} \right|_{p^+} = \left. \frac{dF}{dr} \right|_{p^-} = \left. \frac{dF}{dr} \right|_{p} = -\alpha
$$
 and F(at P) = 0 so Hooke's law valid near point P.

Energy required to separate the atoms $=|\Delta U|=\left|-\int \vec{F}\cdot d\vec{r}\right|=\left|\text{Area enclosed between curve and r - axis}\right|$ \overline{z} \overline{z}

18. (A) \therefore $\frac{dv}{dt} = -bx = v\frac{dv}{dx}$ J 0 $\int_{\mathsf{u}} \mathsf{v} \, \mathsf{d} \mathsf{v} \ = \ \int_{\mathsf{0}}$ x 0 bx dx \Rightarrow 0 u 2 2 v $= -b$ x 0 2 2 x $\Rightarrow -\frac{3}{2}$ u 2 $=-\frac{3k}{2}$ bx^2 \Rightarrow $x = \frac{1}{\sqrt{b}}$ u (B) F = m (– bx) $a = -bx = -\omega^2 x$

(C) acceleration is always towards origin and acceleration is zero at origin which is the mean position of SHM.

19. Let T be the tension in the string.

20. For disc, from torque equation

3 mg R – TR = $\frac{mN}{2} \alpha$ $\frac{\text{mR}^2}{2}$ α (1) By application of Newton's second law on block we get, T – mg = ma (2) where $a = R \alpha$ (3) solving a = $\frac{4g}{3}$

 $\bar{\rho}$ d H R

21.

(a) force on flat surface depends on H (b) Pressure at the location of curved surface depends on H

(c) Net force on hemisphere by liquid = $\left(\frac{2}{3}\pi R^3\right)(\rho)g$ $\frac{2}{5}\pi R^3$ (p J $\left(\frac{2}{6}\pi R^3\right)$ $\overline{}$ $\frac{2}{2}\pi$

22. At $t = 0$

Displacement $x = x_1 + x_2$ = 4 sin $\frac{\pi}{3} = 2\sqrt{3}$ m. Resulting Amplitude A = $\sqrt{2^2 + 4^2} + 2(2)(4)\cos \pi/3 = \sqrt{4 + 16 + 8} = \sqrt{28} = 2\sqrt{7}$ m Maximum speed = $A\omega = 20\sqrt{7}$ m/s Maximum acceleration = A ω^2 = $200\sqrt{7}$ m/s² Energy of the motion = $\frac{1}{2}$ m ω^2 A² = **28 J Ans.**

23. Applying conservation of the angular momentum of the system of three rods about midpoint of the rod CD .

$$
\Rightarrow m \times 5 \times 1 + m \times 5 \times 1 = \left[2\left(\frac{m2^2}{12} + m(\sqrt{2})^2\right) + \frac{m2^2}{12}\right] \Rightarrow \omega = \frac{30}{15} = 2 \text{ rad/sec}.
$$

24. The bob will execute SHM about a stationary axis passing through AB. If its effective length is ℓ ' then

$$
T = 2\pi \sqrt{\frac{g'}{g'}}
$$

\n
$$
\ell' = \ell / \sin \theta = \sqrt{2} \ell \text{ (because } \theta = 45\text{)}
$$

\n
$$
g' = g \cos \theta = g / \sqrt{2}
$$

\n
$$
T = 2\pi \sqrt{\frac{2\ell}{g}} = 2\pi \sqrt{\frac{2 \times 0.2}{10}} = \frac{2\pi}{5} \text{s}.
$$

25. From conservation of angular momentum.

 $\sqrt{\ell'}$

$$
\text{mul } \frac{\mathsf{L}}{2} + \text{mul } \frac{\mathsf{L}}{2} = \left[2\mathsf{m} \frac{\mathsf{L}^2}{12} + \mathsf{m} \left(\frac{\mathsf{L}}{2} \right)^2 + \left(\frac{\mathsf{L}}{2} \right)^2 \right] \omega
$$
\n
$$
\text{mul } = \left[\frac{\mathsf{m} \mathsf{L}^2}{6} + \frac{\mathsf{m} \mathsf{L}^2}{4} + \frac{\mathsf{m} \mathsf{L}^2}{4} \right] \omega = \frac{2\mathsf{m} \mathsf{L}^2}{3} \omega \quad \text{or} \quad \omega = \frac{3\mathsf{u}}{2\mathsf{L}} = \frac{3 \times 6}{2 \times 1} = 9 \text{ rad/s}
$$

26. N = mg $f = ma$ As f must be static friction (No slip condition) $f \leq \mu N \Rightarrow$ ma $\leq \mu$ mg or ma_o ≤ μmg ∴ mA ω^2 ≤ µmg $\therefore \qquad \omega \leq \sqrt{\frac{\mu g}{A}}$

$$
\omega = \frac{2\pi}{T} \le \sqrt{\frac{\mu g}{A}}
$$

$$
\therefore \qquad T \geq 2\pi \, \sqrt{\frac{A}{\mu g}} \qquad \Rightarrow \qquad \mu \geq \frac{4\pi^2 A}{g T^2}
$$

27. The x coordinates of the particles are

 $x_1 = A_1 \cos \omega t$, $x_2 = A_2 \cos \omega t$ separation = $x_1 - x_2 = (A_1 - A_2) \cos \omega t = 12 \cos \omega t$ Now $x_1 - x_2 = 6 = 12 \cos \omega t$ \Rightarrow ot = $\frac{\pi}{3}$ \Rightarrow $\frac{2\pi}{12}$. $t = \frac{\pi}{3}$ \Rightarrow $t = 2s$ Ans.

28.

Using conservation of mechanical energy . $E_{A} = E_{B}$

mg 4R (1 - cos
$$
\theta
$$
) = $\frac{7}{10}$ mv_o² \Rightarrow 8 mg R sin² $\frac{\theta}{2}$ = $\frac{7}{10}$ mv_o²

since θ is very small

$$
\frac{7}{10} v_0^2 = 2 gR \theta_0^2 \qquad v_0^2 = \frac{20 gR}{7} \theta_0^2
$$

Linear amplitude of SHM a = 4R $\theta_0 \Rightarrow \theta_0 = \frac{a}{4R}$

$$
v_0^2 = \frac{20gR}{7} \frac{a^2}{16R^2} = \frac{5}{28} \frac{g}{R} a^2
$$

comparing $v_0^2 = \omega^2 a^2$

$$
\omega = \sqrt{\frac{5g}{28R}}, \qquad T = 2\pi \sqrt{\frac{28R}{5g}}
$$

Alternate solution :

 $mgsin\theta - f = m \alpha'R$.

$$
fR = \frac{2}{5} mR^2(\alpha')
$$

acceleration of center of mass of solid sphere = $\alpha'R = \alpha 4R$

solving above 3 equations \Rightarrow mgsin $\theta = \frac{28}{5}$ m α R

For small θ

$$
\alpha = \frac{5g\theta}{28R}
$$

$$
\omega = \sqrt{\frac{5g}{28R}}, \qquad T = 2\pi \sqrt{\frac{28R}{5g}}
$$

29.
$$
dL = \frac{T}{\Delta} \frac{dx}{dt}
$$

$$
\frac{T}{A} \frac{dx}{y}
$$

T = F₁ - (F₁ - F₂)
$$
\frac{x}{L}
$$

\n
$$
\int_{0}^{4L} dl = \frac{(F_1 + F_2)L}{2Ay} = 1 \times 10^{-9} m
$$

30. 2T sin
$$
\frac{\Delta \theta}{2}
$$
 = dm × ω²r
\n2T $\left(\frac{\Delta \theta}{2}\right)$ = ρ × A × r $\Delta \theta$ × ω² × r
\n $\sigma = \frac{T}{A} = \rho r^2 ω^2$
\n∴ ω = $\frac{1}{r} \sqrt{\frac{\sigma}{\rho}}$ = 2 rad/s

- **31.** Let the original length of the string be L.
Applying $F = kx$, we have $4 = k$ (5) we have $4 = k (5 - L)$ $5 = k (6 - L)$ $9 = k(2X - L)$. From these equations $x=5$
	-
- **32.** The block has two tendencies,

- (i) to slide w.r.t. plank
- (ii) to topple over the point O maximum acceleration for sliding

$$
a \leq \frac{g}{3} \qquad a_{\text{max}} = \frac{g}{3}
$$

Maximum acceleration for toppling, $N = mg$, \mathbf{s} = ma

$$
N \left(\frac{H}{8}\right) = \frac{H}{2} f_{s,} \qquad a_{max} = \frac{g}{4}
$$

So, the block will topple before sliding. Hence, $f_{max} = (M + m) \frac{g}{4}$.

33 to 35 Time taken by particle to go from

$$
x = 0 \text{ to } x = A/2 \text{ is } \frac{T}{12}
$$

\n
$$
\therefore \qquad \text{time interval} = \frac{T}{2} + \frac{T}{12} = \frac{7T}{12}
$$

\n
$$
= \frac{T}{12} \cdot 2\pi \sqrt{\frac{m}{K_1}} = \frac{7\pi}{6} \sqrt{\frac{m}{K_1}}
$$

Assume, maximum compression in right spring is x. Hence,

$$
\frac{1}{2}K_1(2L)^2 = \frac{1}{2}K_1(L+x)^2 + \frac{1}{2}K_2x^2
$$

put $K_2 = \frac{3}{4}K_1$, we get $x = \frac{6L}{7}$.

When mass m is in equilibrium both spring will be in extended state.

.

$$
\Delta \ell_2 = \frac{2F\frac{L}{2}}{2AY} + \frac{\frac{3F}{2}\frac{L}{2}}{2AY} = \frac{7FL}{8AY}
$$

$$
\frac{\Delta \ell_1}{\Delta \ell_2} = \frac{5}{7}
$$

$$
40.
$$

41.

40. $F = \left| \frac{11/2}{x_0} \right|$ J \mathcal{L} $\overline{}$ $\overline{}$ $(F_1 -$ 0 $1 - 2$ x $\mathsf{F}_1-\mathsf{F}_2$ $x + F_2 = \alpha x + \beta$

Energy density at any x

$$
\frac{dU}{dV} = \frac{1}{2} \left(\frac{\alpha x + \beta}{A} \right) \left(\frac{\alpha x + \beta}{AY} \right) = \frac{1}{2A^2Y} (\alpha x + \beta)^2
$$

Energy stored in small segment dx

$$
dU = \frac{1}{2A^2Y} (a^2x^2 + \beta^2 + 2\alpha\beta x) A dx
$$
\n
$$
U = \int dU = \frac{1}{2AY} \int_0^{x_0} (\alpha^2x^2 + \beta^2 + 2\alpha\beta x) dx = \frac{1}{2AY} \left(\frac{\alpha^2x_0^3}{3} + \beta^2x_0 + \beta x_0^2 \right)
$$
\nConsider section PQ
\n
$$
\alpha = FL, \beta = F, x_0 = L/2
$$
\n
$$
U_1 = \frac{19F^2L}{48AY}
$$
\nConsider section QR
\n
$$
\alpha = FL, \beta = 3F/2, x_0 = L/2
$$
\n
$$
U_2 = \frac{37F^2L}{48AY}
$$
\n44.
$$
U = \frac{19F^2L}{48AY} + \frac{37F^2L}{48AY} = \frac{7F^2L}{6AY}
$$
\n42.
$$
F = T.4\ell \qquad A = 400 \text{ cm}^2, \quad \ell = 20 \text{ cm} = 0.2 \text{ m}
$$
\n
$$
= \frac{8}{100} \times 4 \times \frac{2}{10}
$$
\n
$$
= \frac{64}{100} = 0.064 \text{ N} \equiv 0.06 \text{ N}.
$$
\n(B) $W = T.4\pi r^2 (n^{1/3} - 1)$ \n
$$
= 8 \times 9\pi \times 10^4
$$
\n
$$
= 90432 \times 10^4
$$
\n
$$
= 90432 \text{ Joule}
$$

(C)
$$
W = 2 \times T4\pi [(2R)^{2} - R^{2}]
$$

= $8\pi TR^{2} \times 3$

= 24 100 8 × 100 100 1 59088

 $=\frac{1}{10000000}$ = 0.059088 0.06 Joule

(D)
$$
h = \frac{2T \cdot \cos \theta}{r \cdot \rho g}
$$

\n $= 2 \times \frac{8}{100} \times \frac{1 \times 10^4}{5 \times 10^3 \times 10}$
\n $= \frac{32}{10} \times \frac{10^4}{10^6} = 32 \times 10^{4-7} = 0.032 \text{ m} = 3.2 \text{ cm}$
\n43. (A)
\nLet friction be static
\nF + f = ma
\n $F R - f R = \frac{2}{5} m R^2 \alpha$
\na = R α
\nf = $\frac{6}{7} N$
\nf_L = 0.5N \Rightarrow friction is kinetic
\n(B)
\n $\frac{f}{4 - f} = ma$
\n $4 \times \frac{1}{2} + f \times 1 = 2a$
\n $f = 2N$
\n $f_L = 3N$
\n(C)
\n $a = \frac{gsin\theta}{1 + \frac{1}{mR^2}} = \frac{10 \times \frac{1}{2}}{1 + \frac{1}{2}} = \frac{10}{3} m/s^2$
\nmg sin $\theta - f = ma$
\nf = $\frac{mg}{2} - ma = 10 - \frac{20}{3} = \frac{10}{3} N$
\nf_L = u_sN = $\frac{2}{5} \times 2 \times 10 \times \frac{\sqrt{3}}{2} = 4\sqrt{3}$ N Static

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 **WESONANCE WEbsite :** www.resonance.ac.in **| E-mail :** contact@resonance.ac.in Educating for better tomorrow Toll Free : 1800 200 2244 L1800 258 5555LCIN: U80302P J2007PTC **Toll Free : 1800 200 2244 | 1800 258 5555 CIN: U80302RJ2007PTC024029** PAGE NO.- 11

(D)
\n
$$
f = 5N
$$

\n $f = 10/3N$ static
\n $F - f = ma$ \Rightarrow $4 - f = 1a$
\n $f \times 1 - 4 \times \frac{1}{2} = 2 \times \frac{a}{R} \Rightarrow$ $f - 2 = 2a$; $a = 2/3$ m/s²
\n44. $KE_{max} = \frac{1}{2}mv_{max}^2 = TE$
\n $\Rightarrow v_{max} = \sqrt{\frac{2 \times 2}{1}} = 2 \text{ m/s}$
\namplitude $A = \frac{v_{max}}{\omega} = 2m$.
\n $x = A \text{ sinot } 1 = 2 \text{ sin } t$
\n $v = 2 \text{ cos } t = \sqrt{4 - x^2}$
\n $(P) v = \sqrt{2} \text{ m/s } \Rightarrow x = \pm \sqrt{2} \text{ m}$.
\n(Q) KE = $\frac{1}{2}mv^2 \Rightarrow 1 = \frac{1}{2} \times 1 \times v^2 \Rightarrow v = \sqrt{2} \text{ m/s}$.
\n $\therefore x = \pm \sqrt{2} \text{ m}$.
\n(R) at $t = \pi/6$ s, $x = 2 \text{ sin } \pi/6 = 1 \text{ m}$.
\n(S) KE = $\frac{3}{2} \Rightarrow 1.5 = \frac{1}{2} \times \text{mv}^2$
\n $\Rightarrow v = \sqrt{3} \Rightarrow x = \pm 1 \text{ m}$.
\n45. $(P) T = 2\pi \sqrt{\frac{\text{m}}{\text{k}}}$ $\text{m} \uparrow$ T \uparrow
\n $E = \frac{1}{2}kA^2$
\n $(Q) E = \frac{1}{2}kA^2$ $A \uparrow$ E \uparrow
\n $(R) T = 2\pi \sqrt{\frac{\text{m}}{\text{k}}}$ $k \uparrow$ T \downarrow
\n $E = \frac{1}{2}kA^2$ $k \uparrow$ E \uparrow
\n $(S) T = \frac{2\pi \sqrt{\frac{\text{m}}{\text{k}}}}{k_{$

